Header Graphic
Apps for iPad

FAA Glossaries

Touring Machine Company

AC 00-6B Aviation Weather: Part 2

Vertical Motion and Cloud Formation
A cloud is a visible aggregate of minute water droplets and/or ice particles in the atmosphere above the Earth’s surface. Fog differs from cloud only in that the base of fog is at the Earth’s surface while clouds are above the surface.

Clouds form in the atmosphere as a result of condensation of water vapor in rising currents of air, or by the evaporation of the lowest layer of fog. Rising currents of air are necessary for the formation of vertically deep clouds capable of producing precipitation heavier than light intensity.

Vertical Motion Effects on an Unsaturated Air Parcel
As a bubble or parcel of air ascends (rises), the pressure decreases with height. As this occurs, the parcel expands. This requires energy, or work, which takes heat away from the parcel, so the air cools as it rises. This is called an adiabatic process. The term adiabatic means that no heat transfer occurs into, or out of, the parcel. Air has low thermal conductivity, so transfer of heat by conduction is negligibly small.

The rate at which the parcel cools as it is lifted is called the lapse rate. The lapse rate of a rising, unsaturated parcel (air with relative humidity less than 100 percent) is approximately 3 °C per 1,000 feet (9.8 °C per kilometer). This is called the dry adiabatic lapse rate. Concurrently, the dewpoint decreases approximately 0.5 °C per 1,000 feet (1.8 °C per kilometer). The parcel’s temperature-dewpoint spread decreases, while its relative humidity increases.

This process is reversible if the parcel remains unsaturated and, thus, does not lose any water vapor. A descending (subsiding) air parcel compresses. The atmosphere surrounding the parcel does work on the parcel, and energy is added to the compressed parcel, which warms it. Thus, the temperature of a descending air parcel increases approximately 3 °C per 1,000 feet.

The Lifting Condensation Level (LCL) is the level at which a parcel of moist air lifted dry adiabatically becomes saturated. At this altitude, the temperature-dewpoint spread is zero and relative humidity is 100 percent.

Further lifting of the saturated parcel results in condensation, cloud formation, and latent heat release. Because the heat added during condensation offsets some of the cooling due to expansion, the parcel now cools at the moist adiabatic lapse rate, which varies between approximately 1.2 °C per 1,000 feet (4 °C per kilometer) for very warm saturated parcels to 3 °C per 1,000 feet (9.8 °C per kilometer) for very cold saturated parcels.

As the saturated air parcel expands and cools, however, its water vapor content decreases. This occurs because some of the water vapor is condensed to water droplets or deposited into ice crystals to form a cloud. This process is triggered by the presence of microscopic cloud condensation (and ice) nuclei, such as dust, clay, soot, sulfate, and sea salt particles. The cloud grows vertically deeper as the parcel continues to rise.

Common Sources of Vertical Motion
Orographic Effects
Winds blowing across mountains and valleys cause the moving air to alternately ascend and descend.

Frictional Effects
In the Northern Hemisphere, the surface wind spirals clockwise and outward from high pressure, and counterclockwise and inward into low pressure due to frictional force. The end result is that winds diverge away from surface high pressure, causing the air to sink, compress, and warm, which favors the dissipation of clouds and precipitation. Conversely, winds converge into surface low pressure, causing the air to rise, expand, and cool, which favors the formation of clouds and precipitation given sufficient moisture

Frontal Lift
Frontal lift occurs when the cold, denser air wedges under the warm, less dense air, plowing it upward, and/or the warmer air rides up and over the colder air in a process called overrunning. Cloud and precipitation will form given sufficient lift and moisture content of the warm air.

Buoyancy
Air near the ground can warm at different rates depending on the insular properties of the ground with which it is in contact.

Measurements of Stability
Several stability indexes and other quantities exist that evaluate atmospheric stability and the potential for convective storms. The most common of these are Lifted Index (LI) and Convective Available Potential Energy (CAPE).

Lifted Index
The LI is the temperature difference between an air parcel (usually at the surface) lifted adiabatically and the temperature of the environment at a given pressure (usually 500 millibars) in the atmosphere. A positive value indicates a stable column of air (at the respective pressure), a negative value indicates an unstable column of air, and a value of zero indicates a neutrally stable column of air. The larger the positive (negative) LI value, the more stable (unstable) the column of air.

Convective Available Potential Energy
CAPE is the maximum amount of energy available to an ascending air parcel for convection. CAPE is represented on a sounding by the area enclosed between the environmental temperature profile and the path of a rising air parcel over the layer within which the latter is warmer than the former. Units are joules per kilogram of air (J/kg). Any value greater than 0 joules per kilogram indicates instability and the possibility of thunderstorms.

CAPE is directly related to the maximum potential vertical speed within an updraft; thus, higher values indicate the potential for stronger updrafts. Observed values in thunderstorm environments often exceed 1,000 joules per kilogram, and in extreme cases may exceed 5,000 joules per kilogram.

Precipitation
Precipitation is any of the forms of water particles, whether liquid or solid, that fall from the atmosphere and reach the ground. The precipitation types are: drizzle, rain, snow, snow grains, ice crystals, ice pellets, hail, and small hail and/or snow pellets.

Precipitation formation requires three ingredients: water vapor, sufficient lift to condense the water vapor into clouds, and a growth process that allows cloud droplets to grow large and heavy enough to fall as precipitation. Significant precipitation usually requires clouds to be at least 4,000 feet thick. The heavier the precipitation, the thicker the clouds are likely to be.

Growth Process
An average cloud droplet falling from a cloud base at 3,300 feet (1,000 meters) would require about 48 hours to reach the ground. It would never complete this journey because it would evaporate within minutes after falling below the cloud base.

In the collision-coalescence, or warm rain process, collisions occur between cloud droplets of varying size and different fall speeds, sticking together or coalescing to form larger drops. Finally, the drops become too large to be suspended in the air, and they fall to the ground as rain. This is thought to be the primary growth process in warm, tropical air masses where the freezing level is very high.

The other process is the ice crystal process. This occurs in colder clouds when both ice crystals and water droplets are present. In this situation, it is easier for water vapor to deposit directly onto the ice crystals so the ice crystals grow at the expense of the water droplets. The crystals eventually become heavy enough to fall. If it is cold near the surface, it may snow; otherwise, the snowflakes may melt to rain. This is thought to be the primary growth process in mid- and high-latitudes.

Precipitation Types
Snow occurs when the temperature remains below freezing throughout the entire depth of the atmosphere.

Ice pellets (sleet) occur when there is a shallow layer aloft with above freezing temperatures and with a deep layer of below freezing air based at the surface. As snow falls into the shallow warm layer, the snowflakes partially melt. As the precipitation reenters air that is below freezing, it refreezes into ice pellets.

Freezing rain occurs when there is a deep layer aloft with above freezing temperatures and with a shallow layer of below freezing air at the surface. It can begin as either rain and/or snow, but becomes all rain in the warm layer. The rain falls back into below freezing air, but since the depth is shallow, the rain does not have time to freeze into ice pellets. The drops freeze on contact with the ground or exposed objects.

Rain occurs when there is a deep layer of above freezing air based at the surface.

Adverse Wind
Adverse wind is a category of hazardous weather that is responsible for many weather-related accidents. Adverse winds include: crosswinds, gusts, tailwind, variable wind, and a sudden wind shift.

A crosswind is a wind that has a component directed perpendicularly to the heading of an aircraft.

A gust is a fluctuation of wind speed with variations of 10 knots or more between peaks and lulls.

A tailwind is a wind with a component of motion from behind the aircraft.

A variable wind is a wind that changes direction frequently, while a sudden wind shift is a line or narrow zone along which there is an abrupt change of wind direction.

Wind shear is the change in wind speed and/or direction, usually in the vertical.

Weather and Obstructions to Visibility
Weather and obstructions to visibility include: fog, mist, haze, smoke, precipitation, blowing snow, dust storm, sandstorm, and volcanic ash.

Fog
Fog forms when the temperature and dewpoint of the air become identical (or nearly so). This may occur through cooling of the air to a little beyond its dewpoint (producing radiation fog, advection fog, or upslope fog), or by adding moisture and thereby elevating the dewpoint (producing frontal fog or steam fog). Fog seldom forms when the temperature-dewpoint spread is greater than 2 °C (4 °F).

Advection Fog
Advection fog forms when moist air moves over a colder surface, and the subsequent cooling of that air to below its dewpoint. It is most common along coastal areas, but often moves deep in continental areas. At sea, it is called sea fog. Advection fog deepens as wind speed increases up to about 15 knots. Wind much stronger than 15 knots lifts the fog into a layer of low stratus or stratocumulus clouds.

Upslope Fog
Upslope fog forms as a result of moist, stable air being adiabatically cooled to or below its dewpoint as it moves up sloping terrain. Winds speeds of 5 to 15 knots are most favorable since stronger winds tend to lift the fog into a layer of low stratus clouds.

Frontal Fog
When warm, moist air is lifted over a front, clouds and precipitation may form. If the cold air below is near its dewpoint, evaporation (or sublimation) from the precipitation may saturate the cold air and form fog. The result is a more or less continuous zone of condensed water droplets reaching from the ground up through the clouds.

Steam Fog
When very cold air moves across relatively warm water, enough moisture may evaporate from the water surface to produce saturation. As the rising water vapor meets the cold air, it immediately recondenses and rises with the air that is being warmed from below. Because the air is destabilized, fog appears as rising filaments or streamers that resemble steam.

Mist
Mist is a visible aggregate of minute water droplets or ice crystals suspended in the atmosphere that reduces visibility to less than 7 statute miles (11 kilometers), but greater than, or equal to, 5/8 statute mile (1 kilometer).

Haze
Haze is a suspension in the air of extremely small particles invisible to the naked eye and sufficiently numerous to give the air an opalescent appearance. It reduces visibility by scattering the shorter wavelengths of light. Haze produces a bluish color when viewed against a dark background and a yellowish veil when viewed against a light background. Haze may be distinguished by this same effect from mist, which yields only a gray obscuration.

Smoke
Smoke is a suspension in the air of small particles produced by combustion due to fires, industrial burning, or other sources. It may transition to haze when the particles travel 25-100 miles (40-160 kilometers) or more, and the larger particles have settled and others become widely scattered through the atmosphere.

Precipitation
Precipitation is any of the forms of water particles, whether liquid or solid, that fall from the atmosphere and reach the ground. Snow, rain, and drizzle are types of precipitation.

Blowing Snow
Blowing snow is snow lifted from the surface of the Earth by the wind to a height of 6 feet (2 meters) or more above the ground, and blown about in such quantities that the reported horizontal visibility is reduced to less than 7 statute miles (11 kilometers).

Turbulence
Aircraft turbulence is irregular motion of an aircraft in flight, especially when characterized by rapid up-and-down motion caused by a rapid variation of atmospheric wind velocities. Turbulence is caused by convective currents (called convective turbulence), obstructions in the wind flow (called mechanical turbulence), and wind shear.

Convective Turbulence
Convective turbulence is turbulent vertical motions that result from convective currents and the subsequent rising and sinking of air. As air moves upward, it cools by expansion. A convective current continues upward until it reaches a level where its temperature cools to the same as that of the surrounding air. If it cools to saturation, a cumuliform cloud forms. Billowy cumuliform clouds, usually seen over land during sunny afternoons, are signposts in the sky indicating convective turbulence.

When the air is too dry for cumuliform clouds to form, convective currents can still be active. This is called dry convection, or thermals.

Mechanical Turbulence
Mechanical turbulence is turbulence caused by obstructions to the wind flow, such as trees, buildings, mountains, and so on. Obstructions to the wind flow disrupt smooth wind flow into a complex snarl of eddies.

Mountain waves are a form of mechanical turbulence which develop above and downwind of mountains. The waves remain nearly stationary while the wind blows rapidly through them. The waves may extend 600 miles (1,000 kilometers) or more downwind from the mountain range.

When sufficient moisture is present in the upstream flow, mountain waves produce interesting cloud formations including: cap clouds, cirrocumulus standing lenticular (CCSL), Altocumulus Standing Lenticular (ACSL), and rotor clouds. These clouds provide visual proof that mountain waves exist. However, these clouds may be absent if the air is too dry.

Wind Shear Turbulence
Wind shear is the rate of change in wind direction and/or speed per unit distance. Wind shear generates turbulence between two wind currents of different directions and/or speeds.

A temperature inversion is a layer of the atmosphere in which temperature increases with altitude. Inversions commonly occur within the lowest few thousand feet above ground due to nighttime radiational cooling, along frontal zones, and when cold air is trapped in a valley. Strong wind shears often occur across temperature inversion layers.

Clear Air Turbulence (CAT) is a higher altitude (~20,000 to 50,000 feet) turbulence phenomenon occurring in cloud-free regions associated with wind shear, particularly between the core of a jet stream and the surrounding air.

Leave a Reply


The content on this web site is provided for your information only and does not purport to provide or imply legal advice.
Should opinions, explanations, or discussions conflict with current FARs, other rules, regulations, or laws, then appropriate provisions of those rules, regulations, or laws prevail.
Navigation charts are provided for illustrative purposes only and are Not for Navigation.
TouringMachine.com is not responsible or liable for any errors, omissions, or incorrect information contained within this site.
Use at your own risk.
Copyright © 2002-2024 Touring Machine Company. All Rights Reserved.